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Abstract. The generalized massive Thirring model (GMT) with three fermion species is bosonized in the
context of the functional integral and operator formulations and shown to be equivalent to a generalized
sine-Gordon model (GSG) with three interacting soliton species. The generalized Mandelstam soliton
operators are constructed and the fermion–boson mapping is established through a set of generalized
bosonization rules in a quotient positive-definite Hilbert space of states. Each fermion species is mapped
to its corresponding soliton in the spirit of particle/soliton duality of Abelian bosonization. In the semi-
classical limit one recovers the so-called SU(3) affine Toda model coupled to matter fields (ATM) from
which the classical GSG and GMT models were recently derived in the literature. The intermediate ATM-
like effective action possesses some spinors resembling the higher grading fields of the ATM theory which
have non-zero chirality. These fields are shown to disappear from the physical spectrum, thus providing a
bag-model-like confinement mechanism and leading to the appearance of massive fermions (solitons). The
ordinary MT/SG duality turns out to be related to each SU(2) sub-group. The higher rank Lie algebra
extension is also discussed.

1 Introduction

A remarkable property which was exploited in the study
of two-dimensional field theories is related to the possibil-
ity of transforming Fermi fields into Bose fields, and vice
versa (see e.g. [1] and references therein). The existence
of such a transformation, called bosonization, provided in
the last years a powerful tool to obtain non-perturbative
information in two-dimensional field theories [2].

In this context, an important question is related to the
multi-flavor extension of the well known massive Thirring
(MT) and sine-Gordon relationship (SG) [3]. In [4,5] it has
been shown through the “symplectic quantization” and
the so-called master Lagrangian approaches that the gen-
eralized massive Thirring model (GMT) is equivalent to
the generalized sine-Gordon model (GSG) at the classical
level; in particular, the mappings between spinor bilinears
of the GMT theory and exponentials of the GSG fields
were established on shell and the various soliton/particle
correspondences were uncovered.

The path-integral version of Coleman’s proof of the
equivalence between the MT and SG models has been de-
rived in [6]. In the intermediate process a Lagrangian of
the so-called su(2) affine Toda model coupled to matter
(ATM) [5] plus a free scalar appears as a total effective
Lagrangian which provides an equivalent generating func-
tional to the massive Thirring model after suitable field
redefinitions. We generalize the aforementioned result to
establish a relationship between the Nf [= 3 = number of
positive roots of su(3)] fermion GMT and Nf boson GSG

models. Actually, the U(1) GMT currents satisfy a con-
straint and the SG type fields satisfy a linear relationship.
It is shown that in the SU(3) construction, by taking a
convenient limiting procedure, each SU(2) sub-group cor-
responds to the ordinary MT/SG duality.

Earlier attempts used non-linear non-local realiza-
tions of non-Abelian symmetries resorting to N scalar
fields [7,8], in this way extending the massive Abelian
bosonization [3]. In this approach the global non-Abelian
symmetry of the fermions is not manifest and the off-
diagonal bosonic currents become non-local. In Witten’s
non-Abelian bosonization these difficulties were overcome
providing manifest global symmetry in the bosonic sector
[9]. In these developments the appearance of solitons in
the bosonized model, which generalizes the sine-Gordon
solitons, to our knowledge has not been fully explored;
however, in [10] the free massive fermions are considered.
The interacting multi-flavor massive fermions deserves a
consideration in the spirit of the particle/soliton duality
of the Abelian bosonization.

We perform the bosonization of the GMT model fol-
lowing a hybrid of the operator and functional formalisms
in which some auxiliary fields are introduced in order to re-
cast the Lagrangian in quadratic form in the Fermi fields.
As stressed in [11], this approach introduces a redundant
Bose field algebra containing some unphysical degrees of
freedom. Therefore some care must be taken to select the
fields in the bosonized sector needed for the description of
the original theory. The redundant Bose fields constitute
a set of pairwise massless fields quantized with opposite
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metrics and the appropriate treatment in order to define
the correct Hilbert space of states was undertaken in [11]
in the case of two fermion MT like model with quartic in-
teraction only among different species. In the GMT case,
under consideration here, these features are reproduced
according to an affine su(3) Lie algebraic constructions.

We will show that in the bosonization process of the
three fermion species GMT theory the semi-classical limit
of the intermediate effective Lagrangian turns out to be
the su(3) affine Toda model coupled to matter fields. This
intermediate effective action has been written in terms of
the Wess–Zumino–Novikov–Witten (WZNW) action asso-
ciated to su(3) affine Lie algebra [5]. Therefore, in order
to gain insight into the WZNW origin of the GMT model
we undertake the bosonization process using the method
of the Abelian reduction of the WZNW theory to treat
the various U(1) sectors in a rather direct and compact
way such that in the semi-classical limit it reproduces the
ATM model studied in [4,5].

A positive-definite Hilbert space of states H is iden-
tified as a quotient space in the Hilbert space hierarchy
emerging in the bosonization process, following the con-
structions of [11]. One has that each GMT fermion is
bosonized in terms of a Mandelstam “soliton” operator
and a spurious exponential field with zero scale dimension,
this spurious field behaves as an identity in the Hilbert
space H, and so has no physical effects. Afterwards, a set
of generalized bosonization rules are established mapping
the GMT fermion bilinears into the corresponding opera-
tors composed of the GSG boson fields.

The study of these models becomes interesting since
the su(n) ATM theories (see [4,5] and [12–17]) constitute
excellent laboratories to test ideas about confinement [13,
17], the role of solitons in quantum field theories [12],
duality transformations interchanging solitons and par-
ticles [4,5,12], as well as the reduction processes of the
(two-loop) Wess–Zumino–Novikov–Witten (WZNW) the-
ory from which the ATM models are derivable [16,14].
Moreover, the ATM type systems may also describe some
low dimensional condensed matter phenomena, such as
self-trapping of electrons into solitons, see e.g. [18], tun-
nelling in the integer quantum Hall effect [19], and, in
particular, polyacetylene molecule systems in connection
with fermion number fractionization [20].

Moreover, it has recently been shown [17] that the
su(2) ATM model describes the low-energy spectrum of
QCD2 (one flavor and N colors in the fundamental and
N = 2 in the adjoint representations, respectively). In
connection to this point the su(n) ATM theories may be
relevant in the study of the low-energy sector of multifla-
vor QCD2 with N colors.

This work is organized as follows. In the next section
we perform the functional integral approach, first, to bi-
linearize the quartic fermion interactions and, second, to
make the chiral rotations in order to decouple the spinors
and the auxiliary fields and write the effective action by
means of the Abelian reduction of the WZW theory. In
Sect. 3 we take the semi-classical limit of the effective ac-
tion and make the identification with the ATM model.

In Sect. 4 we proceed with the bosonization program and
use the operatorial formulation to bosonize all the ATM
like spinors in the intermediate effective Lagrangian and
identify the SG type fields which must describe the GMT
fermions. Furthermore, the unphysical degrees of freedom
associated to some decoupled free fields are identified. The
semi-classical limits of the various quantum relationships
are taken and compared with the classical results of the
ATM model. In Sect. 5, the positive-definite Hilbert space
is constructed and the fermion–boson mapping is estab-
lished, providing a set of generalized bosonization rules.
The conclusions and discussions are presented in Sect. 6.
The relevant results of the classical GMT/GSG equiva-
lence in the context of the ATM master Lagrangian for-
malism are summarized in the appendix.

2 Functional integral approach

The two-dimensional massive Thirrring model with
current–current interactions of Nf (Dirac) fermion species
is defined by the Lagrangian density1

1
k′ LGMT[ψj , ψ

j
] =

Nf∑
j=1

{
iψ̄jγµ∂µψ

j −mj ψ
j
ψj

}

− 1
4

Nf∑
k, l=1

[
Ĝkl J

µ
k Jl µ

]
, (2.1)

where the mj ’s are the mass parameters, the overall cou-
pling k′ has been introduced for later purposes, the cur-
rents are defined by Jµj = ψ̄jγµψj , and the coupling
constant parameters are represented by a non-degenerate
Nf × Nf symmetric matrix

Ĝ = ĝGĝ, ĝij = giδij , Gjk = Gkj . (2.2)

For example, in the case Nf = 3 the gi’s are some
positive parameters satisfying, along with the Gjk’s, the
relations (A.17) and (4.26) at the classical and quantum
levels, respectively (the semi-classical limit of (4.26) be-
comes (4.31) and this can be compared to (A.17)). The
Gij ’s signs define the nature of each current–current inter-
action (attractive or repulsive) [21]. The sign of Gij is the
same as the one for gij in (A.8).

The GMT model (2.1) is related to the weak coupling
sector of the su(n) ATM theory in the classical treatment

1 Our notation and conventions are

x± = x0 ± x1; ∂± = ∂0 ± ∂1; A± = A0 ±A1;
η00 = −η11 = 1; ε01 = −ε10 = 1; γµγ5 = εµνγν ;

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1

−1 0

)
, γ5 = γ0γ1 =

(
−1 0
0 1

)
,

so the spinors ψj are of the form ψj =

(
ψj

(1)

ψj
(2)

)
. Define the

dual field ϕ̃ by ∂µϕ(x) = εµν∂
ν ϕ̃(x).
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of [4,5] (see Appendix A). We shall consider the special
case of su(3) (Nf = 3). In the Nf = 3 case the currents
at the quantum level must satisfy

Jµ3 = δ̂1J
µ
1 + δ̂2J

µ
2 , (2.3)

where the δ̂1, 2 are some parameters related to the cou-
plings Ĝkl. Notice that the fermion bilinears in the con-
straint (2.3) are defined in terms of point splitting. Below
we will explain that (2.3) is necessary in order to repro-
duce the various particle/soliton correspondences and will
be consistently defined at the level of a quantum field the-
ory for a field sub-algebra. The quantization of constrained
non-Abelian fermion theories with current–current inter-
actions and their relation to the level k = 2Nf WZNW
model has been considered in the literature (see, e.g., [22]
and references therein). The classical counterpart of the
currents relationship (2.3), according to the Lie algebraic
construction of the su(3) ATM model, is given in (A.7).

Taking into account that the signs of the Gij ’s in the
model (2.1) are equal to the signs of the gij ’s in (A.8)
(gi > 0) one can infer that the fermions of the same species
will experience an attractive force. The pair of fermions
of species 1 and 3, as well as 2 and 3, also experience at-
tractive forces, whereas the pair of fermions 1 and 2 suffer
a repulsive force [21]. These features can also be deduced
from the behavior of the time delays due to soliton–soliton
interactions in the associated su(3) ATM model studied
in [15].

In this paper we perform a detailed study of the
Nf = 3 case; however, the construction below until (2.29)
is valid for any Nf . In the context of the operator formu-
lation the set of fundamental local field operators is given
by F ≡ F {

ψ̄j , ψj
}

and the Hilbert space H of the the-
ory is constructed as a representation of the intrinsic field
algebra: H=̇F|0〉. In the functional integral approach the
space H can be constructed from the generating functional
given by

ZGMT[θ̄j , θj ] = N −1
∫
Dψ̄DψeiW [ψ̄i,ψi,θ̄i,θi], (2.4)

where W [ψ̄i, ψi, θ̄i, θi] is the action in the presence of
Grassmannian valued sources θ̄i and θi,

W [ψ̄i, ψi, θ̄i, θi] =
∫

d2x
[LGMT + ψ̄iθi + θ̄iψi

]
. (2.5)

In the next steps we closely follow the procedure
adopted in [11]. As a first step in the bosonization of the
model and in order to eliminate the quartic interactions,
we introduce the “auxiliary” vector fields aµk in (2.4) in
the form

Z ′
GMT[θ̄j , θj , ζ

µ
j ] = N −1

∫
Dψ̄DψDaµi

× exp


iW + i

∫
d2x



∑
k, l

G−1
kl ak.al +

∑
k

ak.ζk




 ,(2.6)

where the G−1
kl ’s are the elements of the inverse of the

matrix G defined in (2.2). In this way we define an ex-
tended field algebra F ′ ≡ F ′ {ψ̄j , ψj , aµk} and the source
terms for the auxiliary fields aµk were included in order to
keep track of the effects of the bosonization on building
the Hilbert space H′=̇F ′ {ψ̄j , ψj , aµk} |0〉. We will show
that the bosonized generating functional Z ′

GMT defines an
extended positive semi-definite Hilbert space.

The bosonization follows by reducing the quartic in-
teraction to a quadratic action in the Fermi fields through
the “change of variables”

aµk = Aµk − 1
2

∑
j l

Gkj ĝjlJµl (2.7)

such that

∫
daµi exp


i
∫

d2x



∑
k,l

G−1
kl akal−

1
4

Nf∑
k, l=1

Ĝkl J
µ
k Jlµ






=
∫

dAµi exp


i
∫

d2x



∑
k,l

G−1
kl AkAl−

∑
k

gkJ
µ
kAk µ




 .

(2.8)

Then the generating functional (2.6) can be written
with the effective Lagrangian density given by

1
k′ Leff =

Nf∑
j=1

{
iψ̄jγµDµ(Aj)ψj −mj ψ

j
ψj

}

+
∑
j k

G−1
jk A

µ
jAk µ , (2.9)

where Dµ(Aj) = i∂µ − gjA
j
µ (no sum in j).

Notice that the Lagrangian (2.9) is local gauge non-
invariant due to the presence of the terms in the last sum-
mation. Since the Aµj ’s are two-component vector fields
(in two dimensions) we introduce the parameterizations
Aj± in terms of the U(1)-group valued Bose fields (Uj , Vj)
as follows:

Aj+ =
2
gj
U−1
j i∂+Uj ; Aj− =

2
gj
Vj i∂−V −1

j , (2.10)

such that

ψ̄jγµDµ(Aj)ψj =
(
V −1ψ

(1)
j

)+
(i∂−)

(
V −1ψ

(1)
j

)
+
(
Uψ

(2)
j

)+
(i∂+)

(
Uψ

(2)
j

)
. (2.11)

In order to decouple the Fermi and vector fields we
perform the fermion chiral rotations

ψj =

(
ψ

(1)
j

ψ
(2)
j

)
=

(
Vjχ

(1)
j

U−1
j χ

(2)
j

)

= Ωjχj (no sum in j), (2.12)



254 H. Blas: Bosonization and generalized Mandelstam soliton operators

with the chiral rotation matrix given by Ωj =
1
2 (1 + γ5)U−1

j + 1
2 (1 − γ5)Vj .

We introduce in the functional integral (2.6) the iden-
tities in the form

1 =
∫

dUj [detD+(Uj)]δ
(gj

2
Aj+ − U−1

j i∂+Uj

)
, (2.13)

1 =
∫

dVj [detD−(Vj)] δ
(gj

2
Aj− − Vj i∂−V −1

j

)
, (2.14)

such that the change of variables from Aj± to (Uj , Vj) is
performed by integrating over the fields Aj±.

Next, performing the chiral rotations (2.12) and tak-
ing into account the relevant change in the integration
measure we can obtain

Π
Nf

j=1dψ̄jdψjdA
j
±

= Π
Nf

j=1dχ̄jdχjdUjdVjJ (U, V ), (2.15)

with

J (U, V )

= exp


−i

∑
j

(
Γ [Uj ] + Γ [Vj ] + icj

∫
d2x(AµjA

j
µ)
)

= exp


−i

∑
j

(Γ [Uj ] + Γ [Vj ]

+
4cj
g2
j

∫
d2xU−1

j ∂+UjVj∂−V −1
j

)]
, (2.16)

where Γ [g] – the Wess–Zumino–Witten (WZW) action [9]
– is given by

Γ [g] =
1
8π

∫
d2xTr(∂µg∂µg−1)

+
1

12π

∫
d3yεijkTr(g−1∂ig)(g−1∂jg)(g−1∂kg)

and appears in (2.16) with negative level. The last term
in (2.16) takes into account the regularization freedom in
the computation of the Jacobians for gauge non-invariant
theories.

Using the Polyakov-Wiegman identity [23]

Γ [UV ] = Γ [U ] + Γ [V ]

+
1
4π

∫
d2x

(
U−1∂+U

) (
V ∂−V −1) , (2.17)

and defining the regularization parameter aj as

aj
2π

=
1
4π

− 4cj
g2
j

(2.18)

the Jacobian (2.16) can be written as

J (U, V )

= exp


∑

j

(
−iΓ [Σj ] +

iaj
2π

∫
d2xU−1

j ∂+UjVj∂−V −1
j

) ,
(2.19)

with Σj = UjVj being a gauge-invariant field.
In the following we shall consider the general case2

(0 ≤ aj < 1). Therefore, the generating functional (2.6)
can be written in terms of the effective action

Weff = W [U, V ] +
Nf∑
j=1

∫
d2x

[
iχ̄jγµ∂µχj

− mj
(
χ∗j

(1)χ
j
(2)Σ

−1
j + χ∗j

(2)χ
j
(1)Σj

)]
, (2.20)

where

W [U, V ]

=
Nf∑
j=1

(
−Γ [UjVj ] +

aj
2π

∫
d2x

(
U−1
j ∂+Uj

) (
Vj∂−V −1

j

))

−
Nf∑

k, j=1

∫
d2x

G−1
jk

gjgk

(
U−1
j ∂+Uj

) (
Vk∂−V −1

k

)
. (2.21)

Notice that in the Abelian case the WZW functional
reduces to the free action

Γ [Σ] =
1
8π

∫
d2x∂µΣ

−1∂µΣ. (2.22)

In two dimensions the vector fields can be written as

Ajµ = − 1
gj

(εµν∂νφj + ∂µηj) , (2.23)

which correspond to the parameterizations

Uj = e
i
2 (φj+ηj); Vj = e

i
2 (φj−ηj). (2.24)

Equations (2.20)–(2.21) taking into account the rela-
tions (2.22)–(2.24) give rise to the effective Lagrangian

1
k′ Leff

=
Nf∑
j=1

[
iχ̄jγµ∂µχj −mj

(
χ∗j

(1)χ
j
(2)e

−iφj + χ∗j
(2)χ

j
(1)e

iφj

)]

+
1
2

Nf∑
j,k

Ajk∂µφj∂
µφk +

1
2

Nf∑
j,k

Fjk∂µηj∂
µηk, (2.25)

where

Ajk =
ai − 1

4π
δjk −∆jk, ∆jk ≡ G−1

jk

2gjgk
(2.26)

Fjk = − aj
4π

δjk +∆jk, j, k = 1, 2, 3, ..., Nf . (2.27)

Notice that the φj scalars will be quantized with neg-
ative metric for G−1

jj ≥ 0.

2 Since the fermionic pieces are invariant under local gauge
transformations one can use the “gauge-invariant” regulariza-
tion aj = 0 in the computation of the Jacobians.
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One can reproduce the sub-algebra su(2) ATM model
associated to each positive root of su(n). So, e.g., set the
fields labelled by i = 2, 3, ..., Nf to zero in (2.25). If φ1 =
2φ, χ1 = χ, η1 = η, g1 = g, G11 = 2, G−1

11 = 1/2, then
taking a1 = 0 one has the Lagrangian (k′ = 1)

Leff = iχ̄γµ∂µχ−m1
(
χ(1)χ

∗
(2)e

2iφ + h.c.
)

− 1
2
A′

11(∂µφ)2, (2.28)

where A′
11 =

(
1
π + 1

g2

)
. The Lagrangian (2.28) appears in

the path-integral approach to the massive Thirring to sine-
Gordon mapping [6], and it has also been considered in [24]
as a model possessing a massive fermion state despite a
chiral symmetry. Moreover, the model (2.28) describes the
low-energy spectrum, as well as some confinement mecha-
nism in QCD2 (one flavor and N colors in the fundamen-
tal and N = 2 in the adjoint representations, respectively)
[17]. The relevance of the su(n) ATM like theories (2.25)
in the study of the low-energy sector of multiflavor QCD2
with N colors deserves a further investigation.

The Lagrangian (2.25) exhibits the (U(1))Nf ⊗
(U(1)5)

Nf vector and chiral symmetries

ηj → ηj , φj → φj + 2Λj , χj → eiαj−iγ5Λj

χj ,

j = 1, 2, 3, ..., Nf ,

where αj and Λj are real independent parameters.
Associated to the above symmetries one has the vector

and chiral currents, respectively:

jk µ = χ̄kγµχk,

jk µ5 = χ̄kγµγ5χ
k + 2

∑
l

Akl∂
µφl. (2.29)

3 Semi-classical limit: su(3) ATM model

From this point we consider the case Nf = 3. Let us
consider the semi-classical limit of (2.25), gi → +∞
(∆jk → 0); then

1
k′ Lsemicl.

=
3∑
j=1

[
iχ̄jγµ∂µχj −mj

(
χ∗j

(1)χ
j
(2)e

−iφj + χ∗j
(2)χ

j
(1)e

iφj

)

+
aj − 1

8π
(∂µφj)2 − aj

8π
(∂µηj)2

]
. (3.1)

The model (3.1), disregarding the decoupled ηj fields
and under certain conditions imposed on the fields and pa-
rameters, becomes the su(3) ATM model (A.1). In fact,
rescaling the fields χj → 1√

λ
χj the model (3.1) is precisely

the so-called su(3) affine Toda model coupled to matter
fields (ATM) [4,5] provided that we consider the relation-
ships (A.2), (A.4) and

m3 = m1 +m2, (3.2)

mj ≡ mj
χ, k′ ≡ kλ,

1
24

≡ λ

8π
(1 − ai),

λ ≥ π

3
, k =

κ

2π
, κ ∈ ZZ. (3.3)

The ATM model is known to describe the solitonic sec-
tor of its conformal version (CATM) [15]. The “symplec-
tic quantization” method has recently been applied to the
su(3) ATM model and classically the GMT and the GSG
models describe the particle/soliton sectors of the theory,
respectively [4,5]. The Lagrangian (3.1) can be written
in terms of the (two-loop) WZNW model for the scalars
(Toda fields) defined in the maximal Abelian sub-group of
SU(3), the kinetic terms for the spinors which belong to
the higher grading sub-spaces of the su(3) affine Lie alge-
bra, plus some scalar–spinor interaction terms [5]. In fact,
(2.20)–(2.21) for gi → ∞ (take ai = 0) reproduce (8.17)
or (8.18) of [5], provided that ε = −1 and disregarding an
overall minus sign of the Lagrangian.

From the point of view of the ATM model defined at
the classical level (A.1), the terms

∑
jk∆jk∂µφj∂

µφk as
well as the ones proportional to the regularization param-
eters aj in (2.25) have a quantum mechanical origin.

Moreover, it has been shown that the classical soliton
solutions of the system (3.1) satisfy the remarkable equiv-
alence (see (A.3)) [15]

3∑
k=1

mk
χχ̄

kγµχk

≡ 1
3
εµν∂ν

[(
2m1

χ +m2
χ

)
φ1 +

(
2m2

χ +m1
χ

)
φ2
]
, (3.4)

where jµk = χ̄kγµχk are the U(1) currents.
At the classical level there are only two vector (chiral)

currents since the φ fields and parameters (α and Λ) sat-
isfy the conditions (A.2) and (A.4) [15,4]. The remarkable
equivalence (3.4) has been verified at the classical level and
the various soliton species (up to the two-soliton case) sat-
isfy it [15]. In view of the property (3.4) it has been argued
that the model (3.1) under the restrictions (A.2) and (A.4)
presents some bag-model-like confinement mechanism in
which the χj spinors (“quarks”) can live only in the re-
gions where ∂xφi 	= 0; i.e., inside the SG type topological
solitons (“hadrons”) [15]. In this work we give an expla-
nation of this effect in the context of the functional and
operator bosonization techniques.

4 Operator approach

As the next step in the hybrid bosonization approach
we consider the model (2.25) (for Nf = 3) and use the
Abelian bosonization rules to write the χj fields in terms
of the bosons ϕj :
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χj(x)

=
( µ

2π

)1/2
e−iπγ5/4 : ei

√
π(γ5ϕj(x)+

∫ +∞
x1 ϕ̇j(x0,z1)dz1) :,

(4.1)

iχ̄jγµ∂µχj =
1
2
(∂µϕj)2, (4.2)

χ∗
(1), j(x)χ(2) j(x) = − cµ

2π
: ei

√
4πϕj(x) : , (4.3)

: χ̄jγµχj := − 1√
π
εµν∂νϕ

j , (4.4)

where the normal ordering denoted by : : is performed with
respect to the mass µ which is used as an infrared cut-off
and c = 1

2exp(γ) ∼ 0.891.
Next, let us introduce the fields Φj and ξj through

ϕj = − 1
∆j

[sjΦj − ξj ] ,

φj = −
√

4π
∆j

(ξj − rjΦj), (4.5)

∆j =
√

4π(sj − rj), (4.6)

where sj and rj are real parameters. With the fields Φj
defined in (4.5) the “mass” terms in (2.25) bosonize to
the usual “Cos(Φj)” fields in the GSG type models [13,
5]. Then the Lagrangian (2.25) in terms of purely bosonic
fields becomes

1
k′ L

′
eff =

3∑
j,k=1

1
2

[Cjk ∂µΦj∂µΦk + 2Djk ∂µξj∂
µΦk

+Ejk ∂µξj∂µξk +Fjk ∂µηj∂µηk]

+
3∑
j=1

M jcos(Φj), (4.7)

where

Cjk =
1
∆2
j

[
s2j + (aj − 1)r2j

]
δjk − 4π

rjrk
∆j∆k

∆jk, (4.8)

Djk = − 1
∆2
j

[sj + (aj − 1)rj ] δjk − 4π
rk

∆j∆k
∆jk, (4.9)

Ejk =
aj
∆2
j

δjk − 4π
∆jk

∆j∆k
, M j =

c µmj

π
, (4.10)

with the ∆jk’s defined in (2.26).
As the result of the choices (4.5)–(4.6) an interesting

feature emerges. Rescaling the fields ξj → (sj − rj)ξ′
j in

(4.7) one notices that the symmetric matrices Ejk, (4.10),
and Fjk, (2.27), are related by an opposite sign. Consider
the fields ξ′′

j =
∑
k U

jkξ′
k and η

′
j =

∑
k U

jkηk, where U
is an orthogonal matrix which diagonalize the matrices E
and F such that the relevant kinetic terms for the fields
ξ′′
j and η

′
j are diagonal. The new fields ξ′′

j and η
′
j will be

quantized with opposite metrics. As considered in [11] the
emergence of these decoupled Bose fields poses a structural
problem related to the fact that the fields ξj and ηj do

not belong to the field algebra F ′ and cannot be defined
as operators on the space H′. Nevertheless, there are some
relevant combinations of them, as we will see below, which
belong to H′.

The GMT model for Nf = 3 describes three fermion
species with the currents constraint (2.3) and we are
faced here with the problem of choosing the correspond-
ing bosonic fields that must describe these fermionic de-
grees of freedom in the effective bosonic Lagrangian (4.7).
On the other hand, in [4,5] by means of the “symplectic
quantization” method it has been shown that the three
bosonic fields in order to describe the relevant fermions
(solitons) of the three species GMT model must satisfy
certain relationship. This fact is expressed in the restric-
tions (A.2) and (A.4) to be imposed on the ATM classical
model (A.1) which remains unchanged in the reduced GSG
theory (A.5) [4,5]. This suggests that we must impose an
analogous restriction at the quantum level; thus, let us
write

Φ3 = δ1Φ1 + δ2 Φ2, (4.11)

where the parameters δ1, 2 are determined from the consis-
tency conditions imposed for the decoupling of the fields
Φj and ξj . In fact, once the relationship (4.11) is assumed
the terms with the Dij coefficients in (4.7) can be written
as

[(D11 + δ1D13) ∂µξ1 + (D21 + δ1D23) ∂µξ2
+ (D31 + δ1D33) ∂µξ3] ∂µΦ1

+ [(D12 + δ2D13) ∂µξ1 + (D22 + δ2D23) ∂µξ2
+ (D32 + δ2D33) ∂µξ3] ∂µΦ2. (4.12)

Consider

si
ri

= 1 − ai + 4π
(
∆ii − ∆ij∆ik

∆jk

)
,

i 	= j 	= k; i, j, k = 1, 2, 3, (4.13)

δp = −4π∆12∆33 − a3∆12 − 4π∆31∆23

4π∆q3∆pp − ap∆q3 − 4π∆12∆p3
,

p 	= q; p, q = 1, 2. (4.14)

For the relationships (4.13)–(4.14) the fields Φj and ξj
decouple since all the coefficients in (4.12) vanish identi-
cally. Then, with this choice of parameters the Lagrangian
(4.7) becomes

1
k′ L

′
eff =

3∑
j,k=1

1
2


Cjk ∂µΦj∂µΦk +

3∑
j=1

2M jcos(Φj)

+ Ejk ∂µξj∂
µξk + Fjk ∂µηj∂

µηk] , (4.15)

where the parameters Cjk can be written as

Cjj =
1
β2
j

+ C ′
jj ; j = 1, 2, 3, (4.16)

C ′
jj = −∆jl∆jm

∆lm

1(
sj

rj
− 1

)2 ; l 	= m 	= j, (4.17)
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Cjk = − ∆jk(
sj

rj
− 1

)(
sk

rk
− 1

) ; j 	= k, (4.18)

β2
j ≡

4π − aj

Gj
lm

g2
j

1 +
g2j
π

1−aj

4Gj
lm

; l 	= m 	= j, (4.19)

Gjlm ≡ G−1
jj − G−1

jl G−1
jm

G−1
lm

,
sk
rk

=
β2

k

4π

1 − β2
k

4π

+ 1. (4.20)

It is convenient to make the change

Φj → βjΦj (4.21)

in all the relevant expressions. Therefore, the relationship
(4.11) becomes

β3 Φ3 = δ1 β1 Φ1 + δ2 β2 Φ2, (4.22)

where

δ1 = −∆12

∆23

(
β2

3

β2
1

)
1 − β2

1
4π

1 − β2
3

4π

;

δ2 = −∆12

∆13

(
β2

3

β2
2

)
1 − β2

2
4π

1 − β2
3

4π

. (4.23)

Here we point out a remarkable result. One can verify

1
2

∑
j

C ′
jjβ

2
j (∂µΦj)

2 +
∑
j<k

βjβkCjk∂µΦj∂
µΦk

≡ 0 (4.24)

in the Lagrangian (4.15); i.e. the coefficient of each bilin-
ear term of type ∂µΦj∂µΦk, j, k = 1, 2 in (4.24) vanishes
identically when the relationship (4.22) and the parame-
ters defined in (4.16)–(4.20) are taken into account. This
result is achieved for any set of the regularization param-
eters ai.

Then the Lagrangian (4.15) becomes (set k′ = 1)

LGSG =
3∑
j=1

[
1
2
∂µΦj∂

µΦj +M jcos(βjΦj)
]

+
1
2

3∑
j, k=1

[Ejk ∂µξj∂µξk + Fjk ∂µηj∂
µηk] , (4.25)

with the fields Φj satisfying the constraint (4.22). Thus
in (4.25) one has the GSG theory for the fields Φj and
the kinetic terms for the ξj and ηj free fields, respectively;
which completely decouple from the SG fields Φj .

Notice that the form of the parameter βj has been de-
termined by requiring the decoupling of the set of fields
(Φj , ξj) and the absence of the “off-diagonal” kinetic
terms for the Φj fields in (4.25) which can always be
achieved as a consequence of (4.22). Let us mention that
the βj ’s will also appear in a natural way in (5.5) related
to the Mandelstam soliton operators.

Since the potential
∑3
j=1

[−M jcos(βjΦj)
]

defined
from (4.25) is invariant under Φj → Φj + β−1

j 2π nj
(nj ∈ ZZ) and in addition the Φj ’s satisfy (4.22), we see
that the gj ’s and G−1

jk for any ai must satisfy

n1

G−1
23

ĝ2
1

g1
+

n2

G−1
13

ĝ2
2

g2
+

n3

G−1
12

ĝ2
3

g3
= 0, nj ∈ ZZ, ĝ2

j ≡ 1 − β2
j

4π

β2
j

,

(4.26)

where βj is given in (4.19). An equivalent expression to
(4.26) is

n1δ1 + n2δ2 = n3, nj ∈ ZZ, (4.27)

where the nj ’s are associated to the topological charges in
the GSG theory.

The fermion mass terms bosonize to the corresponding
cosβjΦj terms, thus being the quantum counterpart of the
classical on-shell relations (A.9)–(A.11). Notice that (4.26)
becomes the quantum version of the relationship (A.17).
See below for more on this point.

The parameters |Λj | in (A.5) and their dependences
on the gj ’s in (A.12)–(A.14) through (A.16) translate at
the quantum level to the β2

j ’s defined in (4.19) for any aj .
Notice that the aj dependence of βj in (4.19) is simi-

lar to the one in the ordinary MT theory, up to the Gjlm
dependence, see e.g. [11]. For aj = 0 (“gauge-invariant”
regularization) one can define from (4.19)

β2
j ≡ 4π

1 +
g2j
π

1
4Gj

lm

, (4.28)

where Gjlm is defined in (4.20).
In the semi-classical limit gi → large, one has from

(4.28) β2
j → 16π2Gj

lm

g2j
, and then (4.23) provides us with

δp = −gp
g3

G12

Gq3 , q 	= p (p = 1, 2). (4.29)

In this limit the relations (4.22) and (4.26) become,
respectively,

1
G−1

12

Φ3

g3
+

1
G−1

23

Φ1

g1
+

1
G−1

13

Φ2

g2
= 0, (4.30)

n1

G23
g1 +

n2

G13
g2 +

n3

G12
g3 = 0, nj ∈ ZZ. (4.31)

Equation (4.30) reproduces the classical relationship
(A.2) with the fields Φj and φj conveniently identified.
On the other hand, (4.31) may reproduce (A.17) for cer-
tain choices of the ni’s and the Gij ’s.

In order to describe each SG model related to the cor-
responding SU(2) sub-group let us set, e.g., j = 1 and
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take G1
23 = 1/4 in (4.28); then3

β2
1 =

4π

1 + g21
π

, (4.32)

which is the standard SG/MT duality [6,3].
The bosonized chiral currents (2.29) become

jk µ5 =
√

16π


 ak

4π∆k
∂µξk −

∑
j

∆kj

∆j
∂µξj


 . (4.33)

One sees that the chiral currents of the model (2.25) are
conserved

∂µj
k µ
5 = 0, k = 1, 2, 3, (4.34)

due to the equations of motion for the ξj fields

ak
4π∆k

∂2ξk −
∑
j

∆kj

∆j
∂2ξj = 0. (4.35)

In the su(2) case, e.g., set jk µ5 = 0 (k = 2, 3) (ai = 0),
then ∂2ξ1 = 0 implies ∂µj

1 µ
5 = 0. This is the known

result of [24] in which the field ξ1 is associated to the
conservation of the chiral current and the field Φ1 to the
zero-chirality sector. Thus, through the SG/MT equiva-
lence one has a zero-chirality massive Dirac field Ψ1 in
the physical spectrum, whereas the spinor χ1 has a non-
zero chirality. In the su(3) case this picture can directly be
translated to the relevant fields and currents (see below).

5 Hilbert space and fermion–boson mappings

In order to conclude with the bosonization program we
must identify the positive-definite Hilbert space and con-
struct the generating functional in the GSG sector of the
theory. With this purpose in mind, let us write the fun-
damental fields

(
ψj , Aµj

)
in terms of the bosonic fields

(ξj , Φj , ηj); thus (2.23) becomes

Ajµ = −
√

4π rj βj
gj∆j

εµν∂
νΦj + �jµ (5.1)

where the �jµ are longitudinal currents:

�jµ = − 1
gj

(
−

√
4π
∆j

εµν∂
νξj + ∂µηj

)
≡ ∂µ�

j . (5.2)

In the next steps we will establish the connections be-
tween the fields ψj of the GMT model and the relevant

3 The semi-classical limit is achieved by setting ai = 0 first
and afterwards gj → large, as it is observed in the case of
MT/SG. In fact, from (4.19) (take G1

23 = 1/4) the limiting
process in the order indicated above provides β2

1 = 4π2

g2
1

in
accordance with the semi-classical limit of (4.32).

expressions of the GSG boson fields Φj and �j . The chiral
rotations (2.12) can be written as

ψj = χje
1
2 (iγ5φj+iηj). (5.3)

Taking into account the bosonization rule (4.1), the
canonical transformation (4.5), the field re-scaling (4.21),
as well as the parameters defined in (4.16)–(4.20) one can
write the Fermi fields of the GMT model (5.3) in terms of
the “generalized” Mandelstam “soliton” fields Ψ j(x)

ψj(x) = Ψ j(x)σj , j = 1, 2, 3; (5.4)

where

Ψ j(x) =
( µ

2π

)1/2
Kj e−iπγ5/4

× : e−i
(

βj
2 γ5Φ

j(x)+ 2π
βj

∫ +∞
x1 Φ̇j(x0,z1)dz1

)
: (5.5)

σj = e
i
2

(
ηj−

√
4π

∆j
ξ̃j

)
(5.6)

= e− i
2 gj�

j

. (5.7)

In (5.5) the phase factor4 Kj = Πi<j(−1)ni (i, j are
flavor indices; ni is the number of Fermi fields with index
i on which Kj acts) is included to make the fields Ψ j anti-
commuting for different flavors [7,25].

Notice that each Ψ j is written in terms of a non-local
expression of the corresponding bosonic field Φj and the
appearance of the couplings βj in (5.5) in the same form as
in the standard sine-Gordon construction of the Thirring
fermions [3]; so, one can refer the fermions Ψ j(x) as gener-
alized SG Mandelstam soliton operators. In the canonical
construction of the MT/SG equivalence the arguments of
the exponentials in the components of (5.5) are identified
as the space integrals of the quantum fermion currents J j

±
expressed in terms of the bosonic field Φj [26]. By anal-
ogy with the Abelian case, various “soliton operators” in
terms of path ordered exponentials of currents have been
presented in non-Abelian models [22]. In the Abelian case,
the features above seem to be unique to the GMT model
considered in this work as compared to the one studied in
[11] in which the bosonized fermions do not have the βj
coupling dependence as in (5.5). In fact, in the bosoniza-
tion of the two species MT like model with quartic inter-
action only among different species, considered in [11], the
fermion analog to Ψ j(x) is expressed as a product of two
fields with Lorentz spin s = 1

4 .
On the other hand, taking into account Jµ3 = δ̂1J

µ
1 +

δ̂2J
µ
2 from (2.3) for

δ̂p =
gp
g3

G12

Gq3 ; p 	= q; p, q = 1, 2, (5.8)

one can re-write (2.7) as

aµp = Aµp − 1
2

(
Gppgp + Gp3g3δ̂p

)
Jµp ; p = 1, 2, (5.9)

4 I thank Prof. M.B. Halpern for communication on this
point.
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aµ3 = Aµ3 − g3
2

(
G33 − G13G23

G12

)
Jµ3 , (5.10)

where the currents

Jµk ≡ J µ
k = Ψ̄kγµΨk; k = 1, 2, 3 (5.11)

are written using the relations (5.4) and (5.6)–(5.7).
It is a known fact that in the hybrid approach to

bosonization the vectors aµi are equal to the longitudinal
currents [11], namely

aµj = �µj , j = 1, 2, 3. (5.12)

Then from (5.1) and (5.9)–(5.10) one can make the
identifications

J µ
i = − βi ε

µν∂νΦi

2π +
(
ai

2

)
(gi)2

[
G−1

jk

Gjk

]
det(G)

;

i 	= j 	= k, i = 1, 2, 3. (5.13)

The form of the current relationship (5.13) for each re-
lated sub-group SU(2) (take aj = 0) is exactly the same
as the one for the ordinary SG/MT relationship [11]. The
currents (5.11) written in the form (5.13) when inserted
into (2.3) reproduce the εµν∂ν derivative of the relation-
ship (4.22) between the boson fields Φj for any aj . In con-
nection to this statement notice that comparing (4.14) and
(5.8) in particular for ai = 0 one has δ̂p = −δp (p = 1, 2).
Therefore, (2.3) can be written in the form ∂µ(J µ

3 +δ1J µ
1 +

δ2J µ
2 ) = 0. This expression, provided that we assume the

relation (4.27), is the quantum version of (A.7) written in
the form ∂µ

(
Jµ3 + m1

m3
Jµ1 + m2

m3
Jµ2

)
= 0. Let us emphasize

that the classical relation (A.3) holds for the soliton solu-
tions; so, each set of choice for nk ∈ ZZ in the corresponding
quantum theory describes the (n1, n2, n3) soliton state.

The “interpolating” generating functional (2.6) writ-
ten in terms of the bosonic fields becomes

Z ′
GMT

[
θj , θ̄j , ζµk

]
= N −1

∫
DΦj δ(β3Φ3 − δ1β1Φ1 − δ2β2Φ2) eiW [Φj]

×
∫
DηjeiW0[ηj]

∫
Dξje−iW [ξj]

× exp

[
i
∫

d2x
∑
k

{[
Ψ̄k(σk)∗] θk + θ̄k(Ψkσk)

+ ζµk .�
k
µ

}]
, (5.14)

where we have inserted the delta functional to enforce
(4.22). According to (4.7) the actions W

[
ηj
]

and W
[
ξj
]

are the free actions for the non-canonical ηj and ξj fields,
respectively, quantized with opposite metrics according to
the discussion in the paragraph just below (4.10). The ac-
tion W

[
Φj

]
corresponds to the coupled SG fields Φj in

(4.25) and the Ψ j ’s are given in (5.5).
From (2.6) and (5.14) one can get the 2n-point corre-

lation functions for the GMT model (2.1) as follows:

〈0|ψ̄j(x1)...ψ̄j(xn)ψj(y1)...ψj(yn)|0〉′

= 〈0|Ψ̄ j(x1)...Ψ̄ j(xn)Ψ j(y1)...Ψ j(yn)|0〉
× 〈0|σ∗

j (x1)...σ∗
j (xn)σj(x1)...σj(xn)|0〉0, (5.15)

where 〈0|...|0〉 means the average with respect to the GSG
theory and 〈0|...|0〉0 represents average with respect to
the massless free theories ηj and ξj . The fields σj give
a constant contribution to the correlation functions due
to the fact that the ηj and ξj fields are quantized with
opposite metrics, namely

〈0|σ∗
j (x1)...σ∗

j (xn)σj(x1)...σj(xn)|0〉0 = 1. (5.16)

The auxiliary vector fields Ajµ in (5.9)–(5.10) belong to
the field algebra F ′, and taking into account that Jµk ∈ F ′,
one concludes that the longitudinal currents �µj ∈ F ′.

The Hilbert space H′ is positive semi-definite since it
has the zero norm states

〈0|�jµ(x)�jµ(y)|0〉0 = 0, (5.17)

where the (�jµ)’s are the longitudinal currents given in
(5.2). These currents generate the field sub-algebra F0 ≡
F0

{
�µj
}

related to the zero norm states H0=̇F0|0〉 ⊂ H′.
The potential fields �j do not belong to F ′, only their
space-time derivatives occur in F ′; in addition, the fields
σj also do not belong to F ′. Therefore, the positive semi-
definite Hilbert space H′ is generated from the field alge-
bra F ′ {ψ̄j , ψj , Aµk} = F ′ {Ψ̄ jσ∗

j , Ψ
jσj , �

µ
k

}
.

In this way, we make the fermion–boson mapping be-
tween the GMT and GSG theories in the Hilbert sub-space
of states H′. For any global gauge-invariant functional
F
{
ψ̄j , ψj

} ∈ F , one can write the one-to-one mapping

〈0|F {
ψ̄j , ψj

} |0〉′ ≡ 〈0|F {
Ψ̄ j , Ψ j

} |0〉. (5.18)

Therefore, one can establish the equivalence

Z ′
GMT

[
θ̄, θ, 0

] ∼ ZGMT
[
θ̄, θ

] ∼ ZΦj
[
θ̄, θ

]
(5.19)

with

ZΦj
[
θ̄, θ

]
= N −1

∫
DΦj δ(β3Φ3 − δ1β1Φ1 − δ2β2Φ2) eiW [Φj]

× exp

[
i
∫

d2x
∑
k

{
Ψ̄kθk + θ̄kΨk

}]
, (5.20)

and the Ψ j ’s are given in (5.5). Therefore, the GMT and
GSG mapping is established in a positive-definite Hilbert
space.

Some comments are in order here. The fields Ψ j(x)
represent the physical fermions of the GMT model. In
fact, the original spinor fields ψj are bosonized in terms
of the Ψ j(x) fields and the exponential operators with zero
scale dimension. These spurious fields σj have no physical
effects and behave as an identity in the Hilbert space of
states since the fields ηj and ξj are quantized with opposite
metrics. On the other hand, according to the discussion in
the paragraph just below (4.35) and as a consequence of
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the results (4.34)–(4.35) one can conclude that the fields
Ψ i have zero chirality and become massive; whereas, the
fields with non-zero chirality χi, whose current conserva-
tion laws are associated to the fields ξj (/∈ F ′), disap-
pear from the spectrum of the theory providing a confine-
ment mechanism of their associated degrees of freedom.
Remember that the fields ξj and ηj enter into the spuri-
ous fields σj . This picture is the quantum version of the
bag-model-like confinement mechanism associated to the
Noether and topological currents equivalence (3.4) at the
classical level, analyzed in [15]. This framework also clari-
fies certain aspects of the confinement mechanism consid-
ered in the sl(2) ATM model at the quantum level [13,
17].

We conclude that it is possible to study the generalized
massive Thirring model (GTM) (2.1) with three fermion
species, satisfying the currents constraint (2.3), in terms
of the generalized sine-Gordon model (GSG) (4.25) with
three boson fields, satisfying the linear constraint (4.22),
by means of the “generalized” bosonization rules

iψ̄jγµ∂µψj =
1
2
(1 − ρj)(∂µΦj)2, j = 1, 2, 3; (5.21)

mjψ̄
jψj = Mj cos

(
βjΦ

j
)
, β2

j =
4π

1 +
g2j
π

1
4Gj

lm

(5.22)

ψ̄jγµψj = − βj
2π

εµν∂νΦj , (5.23)

ρp =
β2
p

2(2π)2


g2

pGpp − δpδ
−1
q


 ∑

j < k

l �= j �= k

gjgkGjkδlεl




 ,

(5.24)
p, q = 1, 2; p 	= q,

δ3 = ε3 = εp = −εq = 1,

ρ3 =
β2

3

2(2π)2


g2

3G33 + δ−1
1 δ−1

2


 ∑

j < k

l �= j �= k

gjgkGjkδl




 ,

(5.25)

where the correlation functions on the right hand sides
must be understood to be computed in the positive-
definite quotient Hilbert space of states H ∼ H′

H0
defined

by the generating functional ZΦj
[
θ̄, θ

]
in (5.20).

Let us mention that the WZ term plays a key role
in determining the fermionic nature of each sine-Gordon
type soliton. In fact, by the immersion of each U(1)
Abelian group into its corresponding SU(2) sub-group in
the bosonized version of the model (4.25) and taking into
account the relevant WZ term one can proceed as in [27]
to determine the fermionic nature of each soliton solution.

The procedure presented so far can directly be ex-
tended to the GMT model for Nf [= n

2 (n− 1); n > 3, Nf

= number of positive roots of su(n)] fermions [28]. Ac-
cording to the construction of [5] (see the appendix) these
models describe the weak coupling phase of the su(n)
ATM models, at the classical level. The strong phase cor-
responds to the GSG theory withNf [= n

2Nb, Nb = (n−1)
=dimension of the Cartan sub-algebra of su(n)] fields, in
which (n−2)(n−1)

2 linear constraints are imposed on the
fields.

6 Conclusions and discussion

Using the mixture of the functional integral and opera-
tor formalisms we have considered the bosonization of the
multiflavor Nf (= 3) GMT model with its U(1) currents
constrained by (2.3). We used the auxiliary vector fields
in order to bilinearize the various quartic fermion inter-
actions. The chiral rotations (2.12) decouple the spinors
from the gauge fields and the Abelian reduction of the
WZW theory allowed us to treat the various U(1) sec-
tors in a rather direct and compact way giving rise to
the effective Lagrangian (2.25). The semi-classical limit
of the theory at this stage is shown to describe the so-
called su(3) affine Toda model coupled to matter (ATM)
(A.1); in turn this fact motivated us to impose a relation-
ship (4.11) between the sine-Gordon (SG) type fields of
the bosonized model (4.7) in order to correctly describe
the soliton counterparts of the GMT fermions following
the results of the classical considerations of [4,5] (see the
appendix). The number of SG type fields turns out to
be equal to Nf (= 3

2Nb). Furthermore, the relationship
between the SG fields (4.11) allowed us to decouple com-
pletely these fields from the remaining bosonic fields. The
remaining sets of free bosonic fields (ξj , ηj) are quantized
with opposite metrics and their contributions are essen-
tial in order to define the correct Hilbert space of states
and the relevant fermion–boson mappings. One must em-
phasize that the classical properties of the ATM model
motivated the various insights considered in the bosoniza-
tion procedure of the GMT model performed in this work.
The form of the quantum GSG model (4.25) is similar to
its classical counterpart (A.5), except for the field renor-
malizations and the relevant quantum corrections to the
coupling constants.

Recently, it has been shown that symmetric space sine-
Gordon models bosonize the massive non-Abelian (free)
fermions providing the relationships between the fermions
and the relevant solitons of the bosonic model [10]. In
Abelian bosonization [3] there exists an identification be-
tween the massive fermion operator (charge non-zero sec-
tor) and a non-perturbative Mandelstam soliton operator;
whereas, in non-Abelian bosonization [9] the fermion bi-
linears (zero charge sectors) are identified with the rele-
vant bosonic operators. In this work we have established
these type of relationships for interacting massive spinors
in the spirit of particle/soliton correspondence providing
the bosonization of the non-zero charge sectors of the
GMT fermions by constructing the “generalized” Mandel-
stam soliton operators in terms of their associated GSG
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fields, (5.5). In this way, our work is more close to that
of [22] in which the authors proposed the “soliton opera-
tors” as exponentials of the non-Abelian currents written
in terms of bosonic fields, and our constructions may be
considered as the relevant Abelian reductions. Moreover,
in (5.21)–(5.23) we provide a set of generalized bosoniza-
tion rules mapping the GMT fermion bilinears to relevant
bosonic expressions which are established in a positive-
definite Hilbert space of states H .

On the other hand, the quantum corrections to the soli-
ton masses, the bound state energy levels, as well as the
time delays under soliton scattering in the ATM model,
considered in [15] at the classical level, can be computed
in the context of its associated GSG theory (4.25). In ad-
dition, the above approach to the GMT/GSG duality may
be useful to construct the conserved currents and the al-
gebra of the corresponding charges in the context of its
associated CATM → ATM reduction [12]. These currents
in the MT/SG case were constructed treating each model
as a perturbation of a conformal field theory (see [29] and
references therein).
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A su(3) ATM model and GMT/GSG duality

In this appendix we summarize the Lie algebraic construc-
tions of [4,5] and provide some new results and remarks
relevant to our discussions. The classical aspects of the
su(3) ATM model have been considered in [4,5,15].

The so-called su(3) ATM Lagrangian is defined by5 [4,
5]

1
k

L

=
3∑
j=1

[
− 1

24
(∂µφj)

2 + iψ
j
γµ∂µψ

j −mj
ψψ

j
eiφjγ5ψj

]
,

(A.1)

5 In [4,5] the ATM model was defined with positive-definite
kinetic terms for the φj fields. However, in order to obtain
(A.1) one can consider an overall minus sign in the classical
Lagrangian (2.4) of [4] taking into account the reality condi-
tions (2.1) in [4]. In fact, the su(2) case with single scalar field
φ has been presented with negative metric [14,16,17].

where φ1 = α1.ϕ = 2ϕ1 −ϕ2, φ2 = α2.ϕ = 2ϕ2 −ϕ1, φ3 =
α3.ϕ = ϕ1 +ϕ2, α3 = α1 +α2, ϕ ≡ ∑2

a=1 ϕaαa. The αa’s
and the αi’s (i = 1, 2, 3) are the simple and positive roots
of su(3), respectively. Consider α2

i = 2, α1.α2 = −1. The
fields satisfy

φ3 = φ1 + φ2. (A.2)

The soliton type solutions of the model (A.1) sat-
isfy the remarkable equivalence between the Noether and
topological currents

3∑
j=1

mj
ψψ̄

jγµψj ≡ εµν∂ν(m1
ψϕ1 +m2

ψϕ2), (A.3)

m3
ψ = m1

ψ +m2
ψ, mi

ψ > 0. (A.4)

The classical equivalence (A.3) has recently been ver-
ified for the various soliton species up to the two-soliton
case [15].

The strong/weak couplings dual phases of the model
(A.1) have been uncovered by means of the symplectic and
master Lagrangian approaches [4,5]. The strong coupling
phase is described by the generalized sine-Gordon model
(GSG)

1
k

LGSG[ϕ] =
3∑
j=1

[
1
24
∂µφj∂

µφj + 2mj
ψ|Λj |cosφj

]
,

(A.5)
where (A.2) must be considered.

On the other hand, the weak coupling phase is de-
scribed by the generalized massive Thirring model (GMT)

1
k

LGMT
[
ψ,ψ

]
=

3∑
j=1

{
iψ
j
γµ∂µψ

j −mj
ψ ψ

j
ψj

}

− 1
2

3∑
k,l=1

[gklJk.Jl] , (A.6)

where Jµk ≡ ψ̄kγµψk, gkl are the coupling constants and
the currents satisfy

3∑
j=1

mj
ψ∂µ

(
ψ̄jγµψj

)
= 0, m3

ψ = m1
ψ +m2

ψ. (A.7)

The signs of the matrix components gij in (A.6) ac-
cording to the construction of [5] can be fixed to be

εjk ≡ sign[gjk],

εjk =

[
sign

[
(αj)2

]
, j = k,

sign [αj .αk] , j 	= k, j, k = 1, 2, 3,

ε =


 1 −1 1

−1 1 1
1 1 1


 , (A.8)

where the αi’s are the positive roots of su(3).
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It is possible to decouple the su(3) ATM equations
of motion obtained from the Lagrangian (A.1) into the
GSG and GMT models equations of motion derived from
(A.5) and (A.6), respectively. This is achieved by using
the mappings

ψ1
(1)ψ

∗ 1
(2)

i

=
−1
4∆

[(
m1
ψp1 −m3

ψp4 −m2
ψp5

)
ei(ϕ2−2ϕ1)

+ m2
ψp5e3i(ϕ2−ϕ1) +m3

ψp4e−3iϕ1 −m1
ψp1

]
, (A.9)

ψ2
(1)ψ

∗ 2
(2)

i

=
−1
4∆

[(
m2
ψp2 −m1

ψp5 −m3
ψp6

)
ei(ϕ1−2ϕ2)

+m1
ψp5e3i(ϕ1−ϕ2) +m3

ψp6e−3iϕ2 −m2
ψp2

]
, (A.10)

ψ∗ 3
(1)ψ

3
(2)

i

=
−1
4∆

[(
m3
ψp3 −m1

ψp4 −m2
ψp6

)
ei(ϕ1+ϕ2) +m1

ψp4e3iϕ1

+m2
ψp6e3iϕ2 −m3

ψp3
]
, (A.11)

where ∆ ≡ g11g22g33+2g12g23g13−g11 (g23)
2−(g12)

2
g33−

(g13)
2
g22; p1 ≡ (g23)

2 −g22g33; p2 ≡ (g13)
2 −g11g33; p3 ≡

(g12)
2 − g11g22; p4 ≡ g12g23 − g22g13; p5 ≡ g13g23 − g12g33;

p6 ≡ −g11g23 + g12g13.
Moreover, the GSG parameters Λj in (A.5), the GMT

couplings gjk and the mass parameters mi
ψ in (A.6) are

related by

Λ1 =
−1
4i∆

[
m3
ψ(g12g23 − g13g22) +m1

ψ

(
g22g33 − g2

23
)]
,

(A.12)

Λ2 =
−1
4i∆

[
m3
ψ(g12g13 − g23g11) +m2

ψ

(
g11g33 − g2

13
)]
,

(A.13)

Λ3 =
−1
4i∆

[
m1
ψm

2
ψ

(m3
ψ)

(g13g23 − g12g33)

+ m3
ψ

(
(g12)2 − g11g22

)]
, (A.14)

m3
ψp6 = −m1

ψp5, m3
ψp4 = −m2

ψp5. (A.15)

Following (2.2) let us write

gjk ≡ 1
2
gjgkGjk, (A.16)

then (A.4) and (A.15) provide a relationship between the
matrix elements Gjk and the gi’s:

g3M12 + g1M23 + g2M13 = 0, (A.17)

where Mij is the cofactor of G.
Various limiting cases of the relationships (A.9)–(A.11)

and (A.12)–(A.14) can be taken [4]. These relationships

incorporate each su(2) ATM sub-model (particle/soliton)
weak/strong coupling correspondences; i.e., the ordinary
massive Thirring/sine-Gordon relationship [14].

Moreover, the su(n) ATM theory is described by the
scalar fields ϕa (a = 1, ..., n−1) and the Dirac spinors ψj ,
(j = 1, ..., Nf ; Nf ≡ n

2 (n − 1) is the number of positive
roots αj of the simple Lie algebra su(n)) related to the
GSG and GMT models, respectively [5]. From the point
of view of its solutions, the one-(anti)soliton solution as-
sociated to the field φj = αj .ϕ (ϕ =

∑n−1
a=1 ϕaαa, αa are

the simple roots of su(n)) corresponds to each Dirac field
ψj [4,15,16].
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